000 01568nam a22002297a 4500
003 PE-AndUNAJMA
005 20231207155029.0
007 ta
008 230427b xxu |||||||| |||| 00| 0 eng d
020 _a978-1-78712-593-3
040 _aUNAJMA
_bspa
_cepis
043 _aR1
082 _a006.4
_bR24
100 _aRaschka, Sebastian /Mirjalili, & Vahid
_98308
245 _aPython machine learning :
_bMachine learning and deep learning with python, sckit-learn, and tensorflow /
_cRaschka, Sebastian
250 _a2a ed.
260 _aColumbia, USA
_bPackt publishing
_c2017
300 _a721
_c17 cm
505 _aGiving Computers the Ability to Learn from Data -- Training Simple Machine Learning Algorithms for Classification -- A Tour of Machine Learning Classifiers Using scikit-learn -- Building Good Training sets - Data preprocessing -- Compressing Data via Dimensionality Reduction -- Learning Best Practices for Model Evaluation and Hyperparameter Tuning -- Combining Different Models for Ensemble Learning -- Applying Machine Learning to Sentiment Analysis -- Embedding a Machine Learning Model into a Web Application -- Predicting Continuous Target Variables with Regression Analysis -- Implementing a Multilayer Artificial Neural Network from Scratch -- Parallelizing Neural Network Training with TensorFlow -- Going Deeper - The Mechanics of TensorFlow -- Classifying Images with Deep Convolutionnal Neural Networks -- Modeling Seqquential Data Using Recurrent Neural Networks
700 _aMirjalili, & Vahid
_99333
942 _2ddc
_cLIB
999 _c13223
_d13203