000 | 01568nam a22002297a 4500 | ||
---|---|---|---|
003 | PE-AndUNAJMA | ||
005 | 20231207155029.0 | ||
007 | ta | ||
008 | 230427b xxu |||||||| |||| 00| 0 eng d | ||
020 | _a978-1-78712-593-3 | ||
040 |
_aUNAJMA _bspa _cepis |
||
043 | _aR1 | ||
082 |
_a006.4 _bR24 |
||
100 |
_aRaschka, Sebastian /Mirjalili, & Vahid _98308 |
||
245 |
_aPython machine learning : _bMachine learning and deep learning with python, sckit-learn, and tensorflow / _cRaschka, Sebastian |
||
250 | _a2a ed. | ||
260 |
_aColumbia, USA _bPackt publishing _c2017 |
||
300 |
_a721 _c17 cm |
||
505 | _aGiving Computers the Ability to Learn from Data -- Training Simple Machine Learning Algorithms for Classification -- A Tour of Machine Learning Classifiers Using scikit-learn -- Building Good Training sets - Data preprocessing -- Compressing Data via Dimensionality Reduction -- Learning Best Practices for Model Evaluation and Hyperparameter Tuning -- Combining Different Models for Ensemble Learning -- Applying Machine Learning to Sentiment Analysis -- Embedding a Machine Learning Model into a Web Application -- Predicting Continuous Target Variables with Regression Analysis -- Implementing a Multilayer Artificial Neural Network from Scratch -- Parallelizing Neural Network Training with TensorFlow -- Going Deeper - The Mechanics of TensorFlow -- Classifying Images with Deep Convolutionnal Neural Networks -- Modeling Seqquential Data Using Recurrent Neural Networks | ||
700 |
_aMirjalili, & Vahid _99333 |
||
942 |
_2ddc _cLIB |
||
999 |
_c13223 _d13203 |